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LETTER TO THE EDITOR 

On the analysis of diffraction catastrophes 

H Trinkaus and F Drepper 
Institut fur Festkorperforschung der Kernforschungsanlage Julich, 5 170 Julich, Germany 

Received 25 October 1976, in final form 26 November 1976 

Abstract. The most important diffraction catastrophes (caustics) occurring in two- 
dimensional diffraction are analysed: the fold (elementary ceustic), the cusp, the hyperbolic 
and the elliptic umbilic catastrophe. Special emphasis is given to the inverse problem: what 
information can be obtained from an observed diffraction catastrophe pattern? We show 
that the critical lines (rainbow lines) in the object plane and the behaviour of the phase 
function in their neighbourhood can be determined approximately from the characteristic 
vectors and the intensities of the main peaks in the pattern of these diffraction catastrophes. 

A common phenomenon in ray theory is the divergence of the density of classical 
trajectories in certain directions leading to infinite intensities. In light and electron 
optics such divergences are well known as caustics. Wave theory does not give infinite 
intensities, but it yields especially large intensities at caustics if the wavelength is very 
small. Therefore it is most important to study the asymptotic behaviour of wave fields 
near caustics for the limiting case of very small wavelengths (semiclassical theory). 

The various possible forms which caustics take can be classified according to the 
catastrophe theory of Thom (1972). Therefore we call the related characteristic wave 
fields diffraction catastrophes. An extensive classification of such catastrophes has been 
given by Arnol’d (1972, 1973) (see also Duistermaat 1974). 

Recently Connor (1976) has applied the ideas of catastrophe theory to semiclassical 
collision theory. Berry (1976) has presented a number of beautiful examples of 
diffraction catastrophes from smooth phase objects like undulated reflecting surfaces. 
In fact caustics, originally observed in optics, occur in various fields of wave and particle 
scattering: in atomic and molecular collisions (see Connor 1976), especially in atomic 
scattering from surfaces (see Berry 1975), as well as in diffuse scattering of neutrons and 
x-rays from displacement fields of dislocation loops in crystals (Trinkaus 1971,1977). 

Diffraction catastrophes are especially useful in analysing diffracting objects: first 
because of the high intensity near caustics and secondly because of the (nearly local) 
relationship between the critical points of the object (rainbow lines) and the points of 
the caustic. In this letter we will discuss the information which diffraction catastrophes 
can give about diffracting objects. For simplicity we will consider only two-dimensional 
phase functions generated by pure phase objects like displacement fields of reflecting 
surfaces. 

For the problem of relating such phase functions to the properties of three- 
dimensional scattering potentials we refer to a recent paper of Drepper (1977). 
Moreover we will confine ourselves to the most important diffraction catastrophes 
occurring in scattering from two-dimensional objects, these are the fold (elementary 
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caustic), the cusp, the hyperbolic and the elliptic umbilic catastrophe. For the following 
considerations we assume that the wave amplitude is given by (see Berry 1975) 

Here k is the wavenumber, K is the direction of observation and x is a point in the 
scattering plane or an impact parameter (see Drepper 1977). Our problem is to 
determine 4(x) from the pattern of the intensity \A(K)~* .  

In the short-wavelength limit (large K )  A is determined by the neighbourhood of 
stationary phase points xs 

~z + 41i(xs) = 0, (2) 

where li denotes differentiation with respect to the coordinate i. This defines a local 
mapping, x + K of the real space into the reciprocal space. If the contributing points xs 
are ‘isolated’, that is many wavelengths apart from each other, one has 

lA(K)I2-, c 1 / D ( X S ( K ) )  (3) 
s 

where D = det(&) is the Hessian H ( 4 )  that is the Jacobian of the mapping from x to 
ll4 and via (2) from x to K. According to (2) and (3), ( A  ( K ) I ~  is given by the density of 
the classical trajectories and measures the density distribution of ll4. For more than 
one dimension this is not sufficient to determine 4(x). 

Since in general, more than one stationary phase point can occur for a given K the 
inverse mapping to (2), that is from K to x, is not unique. The caustic given by 

D ( X ( K ) )  = 0 (4) 
defines the bifurcation set for which at least two stationary phase points coalesce. In the 
x plane D(x)  = 0 will be called the rainbow line. For such points (3) becomes infinite 
and the ordinary method of stationary phases breaks down. 

To analyse the behaviour of A ( K )  in the vicinity of the caustic we will use orthogonal 
coordinate systems, (x ,  y )  and (U, v ) ,  locally adapted to the caustic such that one 
coordinate, say x and U respectively, in the x and in the K plane is parallel to the caustic, 
which means parallel to the non-vanishing eigenvector of ~ $ 1 ~ ~  Then D = 0 means 
dXy = c $ ~ ~  = 0. In the K plane we take v = K~ +& to be zero at the caustic. 

By differentiating (2) and (4) we get: 

du = - dXx dx, ( 5 )  
(ii) the slope of the rainbow line 

Y ’  = - 4 X Y Y / 4 Y Y Y ,  (6)  

(i) the relation between the differentials of the rainbow line and the caustic 

(iii) the curvature of the caustic 

d2 v 
(7) 

The most elementary caustic can be classified as a fold catastrophe. It is a smooth 
caustic for which two stationary points coalesce. These points must be well separated 
from other eventually contributing points to guarantee ‘structural stability’ of the fold 
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catastrophe. The wave field in the neighbourhood of the caustic is described by an Airy 
function. Perpendicular to the caustic we have 

The structural stability of the fold manifests itself in an invariant ratio I l l l o =  0.612 of 
the first side-ridge intensity to the maximum intensity. 

From the distance between the first side-ridge and the main ridge 

AV = V I  - V O  = - 2*2(4y,y/2)”3 k-’13 (9) 

one gets # y y y .  From the maximum intensity one can also determine q5xx. But for this the 
measured intensity has to be put on an absolute scale. One possibility to achieve this 
will be shown below. However, even with the use of the caustic curvature (7) ,  the 
rainbow line in the (x ,  y )  plane cannot be reconstructed with the aid of ( 5 )  and (6) since 
for that purpose q5xyy is needed, which cannot be determined separately from (7) .  We 
will see how the cusp catastrophe can help to some extent. 

The caustic forms a cusp, v - u312, with infinite curvature (7) if q5yyy = 0 in the related 
point of the (x ,  y )  plane. Since in most cases det(&,) = 0 = q5yyy has solutions, the cusp is 
a common phenomenon for two-dimensional diffraction. For a cusp point the rainbow 
line is perpendicular to the caustic according to (6) (y ’ + 00) and its curvature becomes 

(10) x+---. 24XYY 4 Y Y Y Y  

4 x x  4 X Y Y  

A possible distortion of the cusp can be resolved by the shear transformation 

1 AXYf* 
x =i, y = Y - - -  

2 4 X Y Y  

In the vicinity of the cusp, the phase 4(x, y )  can be separated approximately in the two 
variables by the quadratic transformation x = 5-4xyy772/(24xx), j j  = 77 so that the 
two-dimensional integral (1) factors into two one-dimensional integrals. The method 
of stationary phases can be applied only to one of them. The other one is characteristic 
for the cusp catastrophe and was discussed in detail by Pearcey (1946). The structural 
stability of the cusp catastrophe manifests itself in an invariant ratio 11,2/Io = 0.68 of the 
intensity of the two first side peaks to the maximum intensity, 

The main information about 4 ( x ,  y)  which can be obtained from the diffraction 
pattern near a cusp can be extracted from the maximum intensity and two characteristic 
vectors K~ and K? pointing from the main peak (0) to the nearest side peaks (1) and (2) as 
shown in figure l(a). The maximum intensity is 

and the coordinates of the peaks are 

uo = - 0-94,, la ( ‘ I2 sgn(a)/q5,y,k-1/2, U0 = 0; 
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Figure 1. Diffraction patterns of the cusp (a) ,  the hyperbolic umbilic ( b )  and the elliptic 
umbilic (c) as calculated from the corresponding canonical integrals (for the umbilin 
equation (15) has been used). Iso-intensity contours in steps of 0.1 of the maximum 
intensity Io; light full curve: 0.02 Io; broken curve: classical caustic; arrows: characteristic 
vectors defined in the text. 
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with a = 34:yy/4xx - ~,,,,. If the intensity is put on an absolute scale one can determine 
the derivatives c $ ~ ~ ,  &xy,  q5xyy and q5yyy (actually four possible sets) and thus also the 
curvature (10) of the rainbow line from (11) and (12). Hence we may note the most 
important result that the cusp pattern provides the direction ( y ’ +  CO) and the curvature 
(four possible values) of the rainbow line in the corresponding point of the ( x ,  y ) plane. 
If the caustic has several cusps (at least three) the topologically correct contour of the 
rainbow line can in general be found. 

Various degeneracies of the cusp are possible. We discuss the most important one 
occurring for &x +O. In this case two additional cusps or an additional caustic 
approaches the first cusp forming elliptic or hyperbolic umbilics respectively (see 
Connor 1976, or Berry 1976). Thus, a threefold symmetry is often connected with an 
elliptic umbilic showing three cusps. Fully unfolded umbilics occur if the three 
conditions 41ij = 0 are fulfilled. This may happen accidentally or by symmetry. Thus, 
for a symmetry line with (6( - x ,  y)  = -4(x, y )  an umbilic will usually be found and a 
symmetry point with #J(-x, - y )  = -4(x, y )  (e.g. for a displacement field) is always 
connected with an umbilic. 

The most important invariant governing the umbilics is the discriminant A of the 
cubic terms of the Taylor expansion of 4(x, y), that is the Hessian of D (see Gurevich 
1964) 

A = H ( D )  = H ( H ( 4 ) )  = det[(det 4 l j j ) l k I l .  (14) 

For the elliptic umbilic A > 0 while for the hyperbolic one we have A < 0. 
The ‘natural’ coordinate system of the umbilics has one axis parallel to the direction 

of one of the degenerating cusps, which is found as a real solution of q+ijkXiX+k = 0 
(Gurevich 1964). In the fully unfolded case it is defined by the peak structure as shown 
in figures l ( b )  and (c). In these coordinate systems we have 

Symmetrization with the aid of (10) and normalization lead to the normal forms 
t3 f 57’. After a special transformation of the integration paths in the complex plane for 
the elliptic umbilic, a rotation of the coordinate system by 45” yields in the vicinity of the 
fully unfolded umbilics 

where F is either the regular or the irregular Airy function Ai or Bi, a = + 1 and - 1, 
b = + 1 and - i, for the hyperbolic and the elliptic umbilics respectively. The structural 
stability of the umbilics manifests itself in an invariant ratio 11,2/10=0.612 for the 
hyperbolic umbilic and 0.287 for the elliptic one. 

The main information which the diffraction pattern of the umbilics can give is 
contained in the maximum intensity and in two characteristic vectors tel and K ’ ( K ~  + 
K~ = f ~ ~ )  as shown in figure l (b)  and (c). The maximum intensity is 

1A11/31Ao/2.rr12 =0*21k2/3 and =0.12k2’3 (16) 
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and the coordinates of the peaks are given by 

CL = -1-02 v = o  

p1,2+1'02=fv1,2=-1'115 (17) 

/Lo= vo = 0, 

and 

p1,2= *v1,2/J3=0*885, 
for the hyperbolic and elliptic umbilics respectively. We see that the complete set of the 
third derivatives of 4 ( x ,  y )  can be determined from two characteristic vectors alone. 
Since both IAoI2 and the parallelogram x1 x x2 are determined by A we may write 

(xl X x2)21A0/2r12 = 2*032k-2 and = 1.04k-' (18) 
for the hyperbolic and elliptic umbilics respectively. Therefore the maximum intensity 
can be used to put the intensity on an absolute scale. 

If none of the symmetries mentioned above is present no fully unfolded umbilics will 
appear in general. However, sometimes they may be realized by adjusting an appro- 
priate control parameter. We suggest this be done, if possible, in order to gauge the 
intensity. All other special points on a caustic (centres of other catastrophes), like 
swallow tails or parabolic umbilics, are more unlikely in the sense that more control 
parameters have to be adjusted (points in a higher-dimensional space). 

Summarizing, we conclude that a rainbow line in the x plane and the field 4 (x) in its 
neighbourhood can be reconstructed approximately from the properties of the diffrac- 
tion pattern in the neighbourhood of the caustic. 
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